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Intimate relationships between the structure and the mechanical properties of polymer crystals are discussed 
from the molecular theoretical point of view. (1) The Young's modulus along the chain axis is dependent 
largely on the molecular conformation and the force constants. Some typical polymers including 
polyethylene, polyoxymethylene, poly(p-phenylene benzobisoxazole) and cellulose are discussed. (2) Three- 
dimensional anisotropy of the Young's modulus is discussed in relation to the packing mode of the chains. 
In the case of isotactic polypropylene crystal, the important role of anharmonic torsional vibrational modes 
of the methyl groups is discussed, which significantly governs the anisotropy of the elastic constants. (3) The 
molecular deformation mechanism was predicted lattice-dynamically and proved experimentally on the 
basis of vibrational spectroscopic measurements. The direct experimental evaluation of the theoretically 
predicted atomic displacements was performed for the first time through the refined X-ray structural 
analysis of polydiacetylene single crystal under the application of tensile stress. (4) The molecular design of 
novel polymer materials with three-dimensionally high Young's moduli is made starting from the various 
types of conventional polymer crystals such as poly(p-phenylene benzobisoxazole), polyacetylene, poly(p- 
phenylene), orthorhombic polyethylene and cellulose. Some of these crosslinked polymer crystals were found 
to possess a Young's modulus exceeding that of diamond crystal. Copyright © 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

Recently, remarkable developments have been attained 
for the so-called ultra-high-modulus fibres. In these 
materials the polymer chains are arrayed in parallel with 
a quite high degree of orientation along the draw axis, 
and the degree of  crystallinity is also very high. In the 
limiting case the whole sample will become purely 
crystalline and so the mechanical properties intrinsic to 
the polymer crystal will appear directly as the bulk 
properties. As currently understood, it is very important 
to evaluate the intrinsic mechanical properties of  the 
crystalline phase of  polymers as exactly and quantita- 
tively as possible. Data thus obtained of the limiting 
mechanical property must be interpreted well enough in 
connection with the molecular and crystal structures, 
from which the various important  factors governing the 
mechanical properties should be extracted. These impor- 
tant factors will help us to produce novel polymer 
materials with excellent mechanical properties. 

In the first part of  this paper, an evaluation of the 
limiting elastic constants of  polymer crystals will be 
reviewed briefly 1'2 in connection with the conformation 
and force constants of  the polymer chains. These limiting 
mechanical properties can be correlated directly with the 
deformation mechanism of polymer crystals subjected to 
an external force field. In the second part of  this paper, 

* T o  w h o m  c o r r e s p o n d e n c e  s h o u l d  be  a d d r e s s e d  

the theoretical and experimental techniques to trace the 
molecular deformation process will be described. In 
particular, the result of detailed X-ray structural analysis 
for polydiacetylene single crystal subjected to external 
tensile stress will be reported. This is the first direct 
experimental proof  of  the theoretically predicted atomic 
displacements induced by the tensile deformation of  
polymer crystals 3. In the last section, molecular design of  
novel polymers with extremely high Young's modulus, 
which exceeds even that of diamond crystal, will be 
reported 4,5. 

T H E O R E T I C A L  APPROACHES TO CA LCULATE 
TH E ELASTIC CONSTANTS OF P O L Y M E R  
CRYSTALS 

In the calculation of  three-dimensional elastic constants 
of  polymer crystals, we have employed three types of 
theoretical approach. 

One is the so-called lattice dynamical theory developed 
by Born 6. The equation for the elastic constant tensors is 
derived by assuming that the strain energy of the 
polymer crystal becomes minimal with respect to the 
atomic displacements induced by external stress. The 
elastic constants are calculated according to the follow- 
ing equation: 

c = - / % ( F p )  (1) 
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where v is the volume of  the unit cell and F~, Fp~ and Fp 
are the matrices constructed by the atomic coordinates, 
B matrix (the transformation matrix between the 
Cartesian displacement coordinates and the internal 
displacement coordinates) and force-constant matrix F. 
On the other hand, the normal vibrational frequencies v 
can be calculated by the following dynamical equation: 

11~/1 I / 2 B F B M  1/2 _ )~EI z 0 (2) 

where B and F are the same as defined above, M is the 
matrix of atomic masses, A are the eigenvalues and E is 
the identity matrix. As seen in equations (1) and (2), the 
vibrational frequencies and elastic constants can be 
calculated simultaneously using a set of  structural 
parameters and force constants. In other words, we 
may obtain reasonable calculated elastic constants by 
using the B and F matrices checked by a comparison of 
observed and calculated vibrational frequencies. When 
the calculation is attempted for a polymer crystal with a 
complicated structure, however, the preparation of the 
input data is quite cumbersome and so careless mistakes 
can occur frequently. In addition, large memory size is 
needed for the computer and the calculation speed 
becomes very slow. By utilizing the symmetry relation of  
the polymer crystal, equations (1) and (2) become 
simpler, making application easier to complicated 
polymer crystals, because only data concerning the 
crystallographically asymmetric unit are necessary in 

7 the calculat ion.  The lattice dynamical theory can be 
developed further by introducing anharmonic potential 
functions under the quasiharmonic approximation, and 
the elastic constants (and lattice vibrations) can be 
calculated as functions of temperature and stress s 11. 

The second approach is the so-called molecular 
mechanics method 12. The potential energy V is devel- 
oped with respect to the external strain eij as:  

1 

l] t.l kl 

× ( 0  2 VlO~ijO~kl)O6ij~kl + . . .  (3)  

The second derivatives (02 V/OeiiOekl)o correspond to the 
elastic constants cij~l. In the actual calculation we 
utilized the commercially available program 'Profes- 
sional Polygraf '  (Molecular Simulations Inc., USA). 

The third method is to utilize the molecular dynamics 
technique as developed by Rahman et al. 13, in which the 
fluctuation of internal strain (or stress) is related to the 
elastic constants. We applied this method to evaluate the 
temperature dependence of Young's modulus of poly- 
oxymethylene crystal, as will be described in a later 
section. 

S T R U C T U R E  AND M E C H A N I C A L  
ANISOTROPY OF POLYMER CRYSTALS 
(BRIEF REVIEW) 1'2 

Chain conformation and Young's modulus 
Owing to the characteristic structure of polymer 

crystals in which the molecular chains constructed by 
covalent bonding are packed together by weak non- 
bonded intermolecular interactions, the mechanical 
anisotropy of  polymer crystals is very high; the Young's 
modulus Ec along the chain axis is 1 2 orders of 

magnitude higher than those in the directions perpendi- 
cular to the chain axis. Therefore, as an approximation, 
the Young's modulus predicted for an isolated single 
chain may be a good measure for the limiting modulus of 
the polymer crystal along the chain axis. At the present 
stage we can say that the intimate relationship between 
E~ and the chain conformation is well enough under- 
stood theoretically; in other words, the modulus of a 
chain can be predicted quantitatively as long as the chain 
conformation is reasonably constructed. In this section 
we will discuss the intimate relationship between the 
structure and Young's modulus for many types of 
polymers and extract the factors governing the Young's 
modulus of  chains. Of course, the modulus must be 
evaluated originally by taking both the intra- and 
intermolecular interactions into consideration. In some 
examples here, the modulus contains contributions from 
both of  these interactions. 

Planar-zigzag conformation. When a tensile force is 
applied to the planar-zigzag polyethylene (PE) chain 14, 
the strain energy distributes to the skeletal CC bond 
stretching and CCC bond angle deformation by about 
50% each, as shown in Figure 1. This is the reason why 
the PE modulus is as high as 300 GPa. The modulus of 
planar-zigzag poly(vinyl alcohol) (PVA), ca. 287GPa, 
is also in this order of  magnitude, although the larger 
cross-sectional area reduces the modulus slightly com- 
pared with the modulus of PE chain 14. The molecular 
conformation of  or-form nylon-6 has been proposed to 
be planar-zigzag. But the crystallite modulus measured 
at room temperature is only 100GPa 15, far below the 
value predicted theoretically for the planar-zigzag chain 
structure. Recent studies revealed that this polymer 
chain experiences a thermal motion at room temperature 
and contracts to some extent from the planar-zigzag 
conformation. As the temperature decreases to liquid- 
nitrogen temperature, the repeating period of the chain 
increases and approaches the value intrinsic to the 

15 extended zigzag form . Correspondingly, the crystallite 
modulus increases to 270GPa at liquid-nitrogen tem- 
perature, the value predicted for the planar-zigzag struc- 
ture. The lattice dynamical calculation showed the high 
sensitivity of the modulus to the slight contraction of 
the chain: the calculated Ec decreases drastically from 
ca. 300 to 100GPa when the chain is contracted by 
only 0.6% from the planar-zigzag conformation through 
the torsional mode around the amide methylene bonds 
(Figure 2 )16. 

Helical and glide-plane-type chains. Polyoxymethy- 
lene (POM) is a typical helical chain consisting of a 
sequence of gauche C - O  bonds. The strain energy distri- 
butes mainly to the bond angle deformation and internal 
twisting of these bonds (Figure 1). The calculated modu- 
lus is 109 GPa, which is in good agreement with the mod- 
ulus of about 105GPa obtained experimentally at 

150°C 17. Isotactic polypropylene (i-PP) is another 
example of the helical chain conformation. The theoreti- 
cal value of  40 GPa 11 agrees well with the X-ray observed 
value, ca. 40 GPa is. The strain energy distributions to the 
internal twisting and the bond angle deformation of  the 
skeletal chain are large and the CC stretching modes also 
contribute to some extent in this case because of the 
characteristic TGTGTG.. .  conformation. Poly(ethylene 
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Figure 1 Molecular deformation mechanism and strain energy distribution calculated for various polymer chains subjected to a hypothetically large 
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Figure 2 The Young's modulus along the chain axis of a-form nylon- 
6 calculated as a function of the degree of contraction of the chain from 
the planar-zigzag conformation. The arrows indicate the values 
measured by the X-ray diffraction method at various temperatures 15 
(from ref. 16) 

oxybenzoate) (PEOB, - ( O C H 2 C H 2 O C O P h ) -  ) has two 
types of chain conformation in the crystalline lattice. 
The a form is a zigzag-type helix with very long arms 
of monomeric unit ~9 and the chain is deformed easily 
through internal twisting around the sequence of 
C ( P h ) - O - C H z - C H 2 - C ( O ) :  about 85% of  the total 
strain energy distributes to this internal twisting coordi- 
nate as shown in Figure 1. Thus the limiting modulus of  
the a form is only 2 GPa (calculated) 2° or 6 GPa (X-ray 
value) 21. In contrast, the modulus of another crystal 
modification, the /3 form, is calculated to be ca. 

20 57 GPa . The/3 form takes the fully extended planar-zig- 
22 zag conformation and the strain energy does not distri- 

bute to the internal rotations but mostly to bond angle 
deformation of  the skeletal chain. This large difference 
in the modulus between the a and ,fl forms is a good 
example of the high sensitivity of  the Young's modulus 
to conformational differences of the polymer with the 
same chemical formula. 

Rigid-rod polymers. The poly(p-phenylene tere- 
phthalamide) (PPTA) chain is fully extended and con- 
sists of an alternation of  rigid aromatic rings and 
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amide groups. The chain conformation may be assumed 
as a kind of  planar-zigzag form consisting of the alter- 
nation of short and long linear bonds that correspond 
to the amide C ( O ) - N  bond and p-substituted phenylene 
ring, respectively. These virtual bonds tilt to some extent 
from the vertical axis of  the chain and so the strain 
energy distributes mainly to the deformation of the 
bond angles of  the zigzag chain (Figure 1), resulting in 
a Young's modulus that is not so high as expected 
from the chemical formula of  the rigid amide and pheny- 
lene groups, but is only 182GPa (calculated) 2° and 
200GPa (observed) 23. In other words, the rigidity of  
aromatic groups is not reflected effectively in the modu- 
lus of the PPTA chain. Poly(ethylene terephthalate) 
(PET) has a situation similar to that of PPTA. The 
Young's modulus is only ca. 95 GPa 2°. The crystallite 
modulus measured by the X-ray method is 
1 l0 4- 10 GPa 24'25, which is in good agreement with the 
calculated value. 

Poly(p-phenylene benzobisthiazole) (PBT) and 
poly(p-phenylene benzobisoxazole) (PBO) are typical 
rigid-rod polymers and exhibit the highest bulk tensile 
moduli among the various synthetic polymers: 

[_O_ o, 

PBT PBO 

The lattice-dynamically calculated Young's moduli of 
PBT and PBO are 405 and 460 GPa, respectively z6. These 
calculated moduli are in good agreement, respectively, 
with the X-ray values of 395 and 477 GPa measured by 
Lenhert and Adams 27. The crystallite modulus of  PBT 
was measured also by Nakamae et al. to be ca. 
372GPa 39. As shown in Figure 1, the strain energy 
distributes to the internal deformation of the phenylene 
and heterocyclic rings as well as to the stretching of the 
linkages connecting these two rings. The strain energy 
distribution to the torsional coordinates around these 
linkages is almost zero, indicating no contribution of 
such torsional modes to the Young's modulus. 
Wierschke et al. evaluated the Young's modulus of 
PBT and PBO to be 620 and 690 GPa, respectively, on 
the basis of  the semiempirical molecular-orbital method 
(Austin model 1, AM1) 2s. These values seem to be 
overestimated, as stated by the authors themselves. 
Poly(p-phenylene pyromellitimide) (PPPI) is a perfectly 
linear polymer, giving the calculated modulus of 
505GPa 29. Poly(p-phenylene) (PPP) is also a linear 
polymer having a 1,4-linkage of benzene rings, and the 
calculated modulus is 275 GPa: 

O O 

PPP[ PPP 

Cellulose. A sheet of  paper, made of  cellulose, is very 
stiff, as is well known in our everyday life (for example, 
you may have had the experience of having your fingers 
cut by paper). The crystallite modulus of  native cellulose 
(cellulose I) measured by X-ray diffraction is 120- 
140 GPa and that of  regenerated cellulose (cellulose II) 

~o~ strain 

(a) (b) I 
i 

\ ,  ¢ 

'. z--.." ] ?  
2- 5 

~ ¢  '114 " /  
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Figure 3 Tension-induced molecular deformation and the correspond- 
ing strain energy distribution calculated for the cellulose chain (a) with 
and (b) without intramolecular hydrogen bonds (from ref. 32) 

is 90 -112GPa  3°'31. The high Young's modulus of the 
cellulose chain was identified to originate from the role 
of  intramolecular hydrogen bonding 32. The calculation 
of  the modulus was made by neglecting the various inter- 
molecular and intramolecular interactions one at a time, 
step by step. The modulus is not affected significantly 
even when all the intermolecular interactions are 
neglected. But a deletion of  intramolecular hydrogen 
bonds was found to give a modulus only about 40% of 
the original modulus obtained with all the inter- and 
intramolecular interactions taken into account. This 
remarkable reduction of the modulus can be interpreted 
reasonably by investigating the strain energy distri- 
bution, as shown in Figure 3. Ignoring intramolecular 
hydrogen bonds induces easy internal twisting around 
the inter-ring ether linkages when the chain is stretched 
(Figure 3b). This chain deformation through internal 
twisting is prevented when intramolecular hydrogen 
bonds are introduced; i.e. chain deformation occurs via 
bond angle deformation of  the ether linkage, intra-ring 
deformation and stretching of the hydrogen bonds 
(Figure 3a). This molecular deformation mechanism 
results in the high Young's modulus of  the cellulose 
chain. 

Anisotropy of  elastic constants in planes perpendicular to 
the chain axis 

Anisotropy of the elastic constants relates intimately 
to the three-dimensional packing structure of polymer 
chains in the crystal lattice. In the orthorhombic PE 
crystal, for example, the non-bonded interatomic inter- 
actions are important, which work effectively in all the 
lateral directions. As a result the Young's modulus and 
linear compressibility are almost isotropic in the ab 
plane, although the a axis is a little softer than the b axis 
(Figure 4) 14. PVA is more rigid in the lateral directions, 
originating from a network structure constructed by the 
intermolecular hydrogen bonds 14. A similar situation is 
also seen for cellulose II and poly(m-phenylene iso- 
phthalamide) (PPIP) 32. In the unit cell of cellulose II, the 
chains are linked by intermolecular hydrogen bonds in 
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Figure 4 Anisotropy of the Young's modulus in the plane perpendicular to the chain direction. The full circles are the data observed by X-ray 
diffraction 

all three directions. In the case of  PPIP crystal, the 
intermolecular hydrogen bonds are also made along the 
a and b axes just like a jungle gym (Figure 4), where the c 
axis is along the chain direction32: 

Nylon-6 a and -y forms 16 and cellulose 132 show 
significantly large anisotropy of  the Young's modulus 
and linear compressibility in the planes perpendicular to 
the chain axis. The molecular chains are linked by 
intermolecular hydrogen bonds to form a sheet structure 
and these sheets are stacked together by weak van der 
Waals interactions. The modulus in the sheet plane is 
several times higher than that in the direction perpendi- 
cular to the plane. By neglecting the intermolecular 
hydrogen bonds, the anisotropic curves change into 
isotropic form. 

Characteristic behaviour is seen for the elastic 
modulus in the ab plane of i-PP crystal. This polymer 
has methyl groups that spread out from the skeletal 
chains just like branches of  trees. Therefore the mech- 
anical anisotropy is considered to be mostly governed 
by the intermolecular interactions between these 
methyl groups. The anisotropy of  the Young's modulus 
and linear compressibility was calculated for i-PP 
crystal by taking all the methyl-methyl  interactions 
into account 1]. But the observed anisotropy of the 

linear compressibility 33 was not reproduced well. The 
temperature dependence of  the far-infra-red spectra of  
i-PP film revealed that the bands of  methyl torsional 
modes ('r(CH3)) around 200cm ] change the profile 
remarkably as the sample is cooled from room tempera- 
ture to liquid-nitrogen temperature, meaning that the 
methyl torsional modes are highly anharmonic. Then, 
as a measure of anharmonicity, the so-called mode 
Grfineisen constants ,y of the 7(CH3) modes were 
introduced into the equation for the three-dimensional 
elastic constants: the isothermal elastic constants 
c~ are expressed approximately by the following 
equation~l: 

c~ ,~ c°j - k T  Z ~'il"yj! (4) 
l 

where c T and ci°j are the elastic constants at temperature 
T and 0 K, respectively, and k is the Boltzmann constant. 
The mode Grfineisen constant 7it is defined as 
-(OuJ&i)o/U t where ut is the vibrational frequency 
and ~i is a strain. By substituting suitable values for the 
7s, the elastic constants were calculated to give a 
reasonable reproduction of the mechanical anisotropy 
measured at room temperature. 

M E C H A N I C A L  D E F O R M A T I O N  MECH ANISM 
OF P O L Y M E R  CRYSTALS 

As discussed in the previous sections, it is useful to 
interpret the limiting Young's modulus and three- 
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Figure 5 Observed and calculated vibrational frequencies as a function of tensile stress applied to the polyoxymethylene chain, uas(CH2), u~(CH2), 
6(CH2), w(CH2) and t(CH2) are the antisymmetric stretching mode, symmetric stretching mode, bending mode, wagging mode and twisting mode of 
the methylene group, respectively, uas(CO ), us(CO ), 6(CO) and r(CO) are the antisymmetric stretching mode, symmetric stretching mode, bending 
mode and torsional mode concerning the CO skeletal bonds, respectively (from ref. 9) 

dimensional elastic constants of polymer crystals in 
terms of  the strain energy distribution and the atomic 
displacements, in other words, on the basis of the 
molecular deformation mechanism. It is necessary, 
however, to confirm experimentally the theoretically 
predicted atomic displacements. 

V i b r a t i o n a l  spectroscopic" m e t h o d  

Vibrational spectra are very sensitive to slight changes in 
local structure and therefore may be one of the most 
powerful methods to trace the stress-induced changes in 
structure and interactions. We measured the infra-red and 
Raman spectral changes induced by the application of 
tensile stress for various polymer samples, and interpreted 
the data on the basis of the atomic deformation mechanism 
predicted by the lattice dynamical theory. 

For  example, in the case of  POM, a large low- 
frequency shift is seen for the vibrational bands of C - O  
stretching, C - O - C  and O - C  O bending, and COCO 
torsion, as shown in F i g u r e  517. The bands of the CH 2 
side groups do not shift at all or rather shift to the higher- 
frequency side (e.g. CH2 twisting mode, t(CH2)). This 
spectral change is consistent with the strain energy 
distribution calculated for this polymer chain (F igure  1). 
That is, the vibrational modes corresponding to the 
internal coordinates to which the strain energy prefer- 
entially distributes show large frequency shifts when the 
chain is tensioned. 

What is the mechanism of these vibrational frequency 
shifts? The vibrational frequency shift can be reasonably 
understood as an anharmonic effect of  the vibrations. In 
order to quantify this stress-induced vibrational fre- 
quency shift of polymer crystals, we have developed a 
lattice dynamical theory under the quasiharmonic 
approximation 8'9, where the potential energy V is: 

, - , (  o3v 
0.,o.,o.v0 . + . . .  

× ARiAR/ z 7 ~i " fO -t- Zfi/kARkk 

l Z (5) x A R i A R  i = -~ .i " ' 

In this way the potential energy can be expressed in a 
harmonic form but the force constantsf/i  are affected by 
the change in the internal coordinate AR as defined by 
the equation fi/=.fi.O+~kfli/kARk. The AR is 
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expressed as a function of  the force constants, atomic 
coordinates of the initial structure and strain, and 
therefore f/j  is also expressed as a function of strain (or 
stress). By using these force constants, the vibrational 
frequency u is calculated as a function of  the strain on the 
basis of equation (2). This idea was formulated and 
applied to several cases including PE, POM and i-PP 8'9. 
In Figure 5 the vibrational frequency shifts calculated for 
the POM chain are plotted against applied stress with 
good reproduction of  the observed data. 

In the above sections we pointed out the good 
correlation between the strain energy distribution and 
the vibrational frequency shift. Both terms can be 
connected reasonably in the following manner. The 
strain energy distribution (SED) for the internal dis- 
placement coordinate AR is defined simply as: 

A R 2 / ~ ~ ,  f AR 2 ~ fo  A R 2 / ~ ,  f0  AR 2 (SED ) /,.--~ 

i.e. 

o~ f ° A R  2 

AR oc [(SEO)/f°] U2 (6) 

The vibrational frequency of the corresponding AR is 
given as follows: 

u oc B ( f / m )  1/2 ---- B [ ( f  0 + f Z A R ) / m ]  1/2 

B[(fo/m)]]/2[1 + f 'AR/(2f°)]  

Uo[1 +f'AR/(2f°)]  (7) 

where B is the so-called B matrix related to the geometry 
and m is the reduced mass. From equations (6) and (7), 
the vibrational frequency shift Au is expressed as 

follows: 

A .  = .  _ ~o ~ . o f ' a R / ( : / ° )  

uof'[(SED)/f°]l/2/(2f °) oc B ( f  /f°)(SED) 1/2 (8) 

This equation tells us that the vibrational frequency shift 
induced by the chain deformation is proportional to the 
square root of the strain energy distribution. This 
equation says also that both the geometrical factor (B) 
and the interaction factor ( f )  govern the frequency shift 
and that the balance ( f ' / F )  between the anharmonic 
force constant f '  and the harmonic force c o n s t a n t f  ° is 
important for At,: even when f o  is small or the 
coordinate R is soft, the vibrational frequency shift Au 
may be small if the anharmonic force cons t an t f  ~ is small. 

Refined X-ray structural analysis of strained 
polymer crystal 

Vibrational spectroscopy is a powerful tool to trace 
the mechanical deformation of  polymer crystals as 
viewed from the molecular level. But the spectral data 
give relatively indirect information about deformation 
mechanisms. This results because the vibrational fre- 
quency is governed by the coupling between atomic 
coordinates and force constants. Therefore, information 
on the atomic displacements cannot be extracted 
separately from the interaction term. In order to obtain 
this geometrical information more directly and explicitly, 
one must carry out accurate X-ray structural analysis for 
the sample subjected to tensile force. Unfortunately, 
however, this is not practicable for most synthetic 
polymers because the X-ray diffraction data are quite 
poor: the reflections are very broad and the number is 
limited to several tens at most. One exception is the case 
of  polydiacetylene, which polymerizes into a giant single 
crystal, several centimetres in length. Recently we 

(a) 

b 

Figure 6 
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(a) Molecular and (b) crystal structures of polydiacetylene (PDCHD) analysed by using an X-ray imaging plate system 

POLYMER Volume 37 Number 10 1996 1781 



Structure and mechanical properties of polymer crystals." K. Tashiro and M. Kobayashi 

(a) 

Strain Energy 1 
Distr ibut ion  

i ~  7% 

1 7 %  ~ 1 5 %  

~] -~'17 % 

1% 

1% ? 

(b) 
tension=0.00% 

0.26 1 0.40 
0.67 

o 
0.29 
0.49 

~ o  00% o.s9 o 0 0 % .  ~\ ~ • L~ 0 O0 0 07 ~,l . ' . ~  
0:20 o:;; 

o 0.07 -0.16 0,13 
-0.31 0.40 
-0.51 L 

Figure 7 Molecular deformation mechanisms of polydiacetylene chain subjected to a tensile stress. (a) Lattice-dynamically predicted atomic 
displacements and strain energy distribution; (b) X-ray analysed changes of the internal coordinates. Each set of four figures denotes the percentage 
relative changes of each internal coordinate, corresponding to the four stages of the strain applied along the chain axis 

succeeded in X-ray diffraction measurements of this 
polymer single crystal subjected to a constant tension 
and analysed the stress-induced atomic displacements 
directly 3. 

The sample used for this experiment is poly[1,6-di(N- 
carbazolyl)-2,4-hexadiyne] (PDCHD) with the following 
chemical structure: 

-[-CR=CR-C~C-C-]- R = 

The sample was mounted in a home-made small 
stretcher, which was mounted on a goniometer head. 
Twenty shots of  X-ray oscillation photographs (each 
oscillation angle 5 ° in the total range of  0-100 °) were 
measured with the sample tensioned along the chain axis 
at a constant strain. The photographs were taken using 
an image plate (IP) system (DIP3000, Mac Science Co. 
Ltd, Japan). The total number of  reflections collected 
from the set of  20 shots was about 6000. The collected 
data were analysed using the commercially available 
programs 'DENZO'  (for the indexing of  the reflections 
and the determination of the cell parameters) and 
'Crystan GM'  (for the direct method and the least- 
squares refinement of  the strucure). In order to increase 
the experimental precision, about five samples were used 
for the independent sets of  measurements at similar 
tensile strain and the results were averaged. In Figure 6 is 
shown the molecular and crystal structure of  P D C H D  in 
the tensile-free state. Figure 7 summarizes the structural 
changes of  the P D C H D  skeletal chain induced by the 

Table 1 Unit-cell parameters of PDCHD at various strains 

Fibre axis 

Strain (%) a (,~) b (A) c (,~) ,3 (deg) 

0.00 12.846 4.887 17.332 108.30 
0.26 12.826 4.900 17.317 108.30 
0.40 12.824 4.907 17.318 108.30 
0.67 12.788 4.920 17.286 108.33 

tensile strain, where the change in the internal coordi- 
nates (bond stretching, angle deformation, etc.) is shown 
as a percentage. The unit-cell parameters measured at 
each strain are listed in Table 1. The unit cell is stretched 
along the chain axis and contracts in the lateral 
directions with Poisson's ratio of ca. 0.7-0.4. As seen 
in Figure 7b, the C - C  and C=C bond lengths are 
stretched significantly and the angle C - C = C  is increased 
and the angle R - C = C  is decreased. These geometrical 
changes of the skeletal chain are quite consistent with the 
lattice-dynamically predicted atomic displacements 
shown in Figure 7a 3~. This may be the first successful 
experiment to prove the theoretically predicted chain 
deformation mechanism on the basis of a refined X-ray 
structural analysis. The details of the analysis will be 
published elsewhere. 

STRESS AND T E M P E R A T U R E  DEPENDENCES 
OF YOUNG'S  MO D U LU S  

As discussed in the previous section, nylon-6 ~ form 
shows a large temperature dependence of  the crystallite 
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Figure 8 (a) Molecular motion of polyoxymethylene chain calculated by molecular dynamics. (b) Temperature dependence of the Young's modulus 
observed by the X-ray diffraction method (©, Q, [] and A). The crosses are the values calculated by lattice dynamics without any consideration of the 
large thermal motion of the chain 34. (c) Temperature dependence of the Young's modulus calculated by molecular dynamics 

modulus15: ca. 100GPa at room temperature and 
270 GPa at low temperature. This drastic change was 
attributed to the slight change in the chain conformation 
through the internal twisting motion around the skeletal 
bonds. This consideration was supported theoretically 
by the lattice-dynamical calculation 16. 

The Young's modulus is dependent also on the 
externally applied stress. This originates from the 
anharmonic effect of  the vibrations. This anharmonic 
effect can be detected by measuring the stress-induced 
vibrational frequency shift, as discussed in the previous 
sections. By introducing the force constants as a function 
of  stress ( f = f ° + f ' A R = f ° + f " a ) ,  the Young's 
modulus can be expressed explicitly as a function of  
stress a. For  the POM model chain, the modulus Ec was 
approximately expressed as Ec = 9 2 . 8 -  3.4cr (GPa), 
where the contribution of  the anharmonic effect (the 
second term) is only ca. 4% 35 . 

Consideration of an anharmonic vibrational effect on 
the modulus also gives the temperature dependence of  
the modulus. The isothermal Young's modulus is 
approximately expressed as: 

Eis T ~ Ei°o - k T  ~~(~, / )2 (9) 

where Ei°so is the modulus at OK and 7l is a mode 
Griineisen constant of  the lth mode. The summation 

covers all the modes included in unit volume. For  the 
POM chain, we estimate EisTo ,~ 1 0 9 -  0.045T (GPa) 35. 
At T = 300K, Eiso is 96GPa,  which is close to 
75 4 -10GPa  measured by the X-ray method at room 
temperature. The molecular dynamics method gave the 
detailed temperature dependence of Young's modulus of  
POM 36. In the calculation nine chains were packed into 
the cell and the time dependence of  the unit-cell structure 
was calculated under conditions of constant temperature 
and pressure. As illustrated in Figure 8a, the chain 
experiences a rigorous thermal motion with increasing 
temperature and the conformation is more disordered, 
reflecting the large reduction of  the modulus as shown in 
Figure 8c. This may be due to the coupling between the 
rotational motion of  the chain with the internal twisting 
mode around the C - O  skeletal bonds. The calculated 
temperature dependence of the modulus reproduces 
relatively well the X-ray observed data shown in Figure 
8b 34. The details will be published in a separate paper. 

M O L E C U L A R  DESIGN OF NOVEL P O L Y M E R  
CRYSTAL WITH T H R E E - D I M E N S I O N A L L Y  
H I G H  Y O U N G 'S  M O D U L I  

As discussed in the previous sections, rigid polymers such 
as PBO and PBT possess very high Young's modulus 
along the chain axis. However, one of  their weak points 
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Figure 9 An ilb,stration of the method to construct the three- 
dimensionally cre ;qinked network starting from the usual polymer 
crystal (from re£ 4) 

lateral directions? One of the most effective methods may 
be the introduction of covalent crosslinks between 
adjacent molecular chains in the crystalline lattice. We 
tried to generate various types of  crosslinks and found a 
simple but effective method of crosslinking 4. As shown in 
Figure 9, the polymer chains are arrayed parallel to each 
other and the atoms (e.g. hydrogen atoms) extending 
from the main chains are replaced by carbon atoms, for 
example. These chains are shifted to positions suitable 
for the effective distances of  crosslinking and then the 
carbon atoms of the side arms are covalently bonded 
between the adjacent chains by an alternate sequence of  
single and double bonds in a zigzag form. These 
crosslinked polymer lattices are energetically minimized 
and the three-dimensional elastic constant and compli- 
ance tensors are calculated. This method has been 
applied to PBO, poly(p-phenylene) (PPP) and poly- 
acetylene (PA). For  example, Figure 10 shows the three- 
dimensionally crosslinked PA and PPP crystals. The 
calculated Young's  moduli of  the crosslinked polymers 
are listed in Table 2. These values were calculated by 
employing the universal force field 37. The values are, of  

(a) 

. . . . . .  I:"5 ....... 
. . . . .  ....... I t  ] 

\ . . . .  . % e .... x ,  : :~ - ....... -~, ..... - .  
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(b) 

Figure 10 Three-dimensionally crosslinked polymer crystals: (a) poly(p-phenylene) and (b) polyacetylene 

as structural materials is the low elastic modulus in the 
lateral directions, of  the order of  10 GPa  as calculated 
theoretically. How can we increase the moduli in the 

course, dependent on the force-field parameters utilized 
in the numerical calculation, but the essential points of  
the results are not changed. The modulus is in the range 

1 7 8 4  P O L Y M E R  V o l u m e  37  N u m b e r  10  1 9 9 6  
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Figure 11 Structures of (a) orthorhombic polyethylene and (b) three- 
dimensionally crosslinked polyethylene crystals (from ref. 4). The 
hydrogen atoms in (a) are replaced by boron atoms in (b) 

(a) 

(b) 

Table 2 Calculated Young's modulus of crosslinked polymer crystals 

Crosslinked Axial modulus Lateral moduli 
model (GPa) (GPa) 

PBO 873 665 712 
PPP 1768 724 739 
PA 1699 998 1796 

Table 3 Young's moduli and bulk modulus (BM) for C60 and 
variously crosslinked C60 crystals 

Axial modulus Lateral moduli BM 
Model (GPa) (GPa) (GPa) 

C60 simple cubic 36 27 
1D polymer lattice 227 38, 45 37 
2D network 231 52, 96 48 
3D network 179 153, 153 107 

of  700-1900 GPa in all three directions, which is close to 
or exceeds the Young's modulus of diamond crystal, ca. 
1050GPa calculated by using the same force-field 
parameters (the observed modulus is 1030 GPa). 

This crosslinking method can be applied even to the 
case of  orthorhombic polyethylene crystal as shown in 
Figure 11, where the hydrogen atoms are replaced by 
boron atoms and the trans-zigzag chains are linked by 
B - B  bonds. For  this crosslinked PE model, the modulus 

Figure 12 Energetically minimized models of (a) one-dimensionally 
and (b) three-dimensionally linked C60 crystals 

is about 600 GPa in all directions. The idea has also been 
applied to cellulose. Starting from the structure of 
energetically minimized cellulose crystal, the three- 
dimensionally crosslinked cellulose crystal was con- 
structed in which the OH and CHzOH side groups are 
replaced by CH2 groups. The Young's modulus along 
the main chain is about 250 GPa and those in the lateral 
directions are 130-200GPa. These values should be 
compared with those of  the highly anisotropic cellulose 
crystal: ca. 183 GPa along the chain axis, ca. 112 GPa in 
the sheet plane and ca. 13GPa in the direction 
perpendicular to the sheet plane, calculated on the 
basis of the force-field parameters of Dreiding II3S; or 
168, 60 and 20GPa,  respectively, calculated by force 
constants adjusted to reproduce the vibrational spectral 
data 3z. 

The C60 molecule, buckminsterfullerene, is an electro- 
nically conjugated spherical molecule. We have tried to 
construct one-, two- or three-dimensionally crosslinked 
C60 crystals on the basis of the above-mentioned 
principle. A single C60 molecule was generated and 
energetically minimized in a simple cubic lattice. Then 
the molecules were linked covalently along one axis to 
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create a one-dimensional polymer crystal, which was 
found to be just the same model proposed for the 
polymerized C60 substance 4°'41. This one-dimensional 
polymer chain was further crosslinked into two-dimen- 
sional and three-dimensional network structures. This 
model was minimized energetically and the elastic 
constants were calculated based on the second derivative 
method. The obtained Young's modulus and bulk 
modulus (BM) are listed in Table 3. In Figure 12 are 
shown the one- and three-dimensionally linked C60 
network structures. The one-dimensional polymer has a 
modulus comparable to those of aromatic polyamide 
and polyester 1,2. In the case of  the three-dimensional 
network, the modulus is 150-180 GPa in all directions. 

In this way, starting from conventional polymer 
substances, we can construct a variety of  new polymer 
materials with three-dimensionally high elastic moduli 
through a very simple but quite useful crosslinking 
method. The crosslinked PA and PPP structures are 
interesting also in that they are three-dimensionally 
conjugated systems. Suitable doping of metal ions into 
these structures may give highly electrically conductive 
polymers in three dimensions. That is to say, we might 
have novel polymer materials with excellent mechanical 
and electrical properties, exceeding those of diamond 
crystal. At this stage, however, readers may notice that 
we now have one significant problem to solve. 'How can 
we actually synthesize these new materials?!' 
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